¹Northwestern University, Evanston, USA ²University of British Columbia, Vancouver, Canada ³University of Montpellier, Montpellier, France

Introduction

- Cyclic liquefaction of granular materials
- Long-term evolution of contact network
- Jamming transition between solid-like and fluid-like

Protocols

- Bi-periodic boundary
- Isotropic compression with $p_0 = 100$ kPa
- Constant-volume cyclic shear with a constant $\dot{\gamma}$

Figure 1: Particle arrangements and boundary conditions for a sample composed of 8000 spheres: (a) at the end of sample preparation; (b) during constant height cyclic shearing. Gray particles are glued to the top and bottom walls of the bi-periodic cell.

Contact info:

*myang@northwestern.edu **mtaiebat@civil.ubc.ca ***franck.radjai@umontpellier.fr

Micromechanical assessment of the phase transition in cyclic liquefaction of granular materials

Ming Yang^{1,2,*} Mahdi Taiebat^{2,**} Farhang Radjaï^{3,***}

Macro

Figure 2: Macroscopic response of a constant-volume cyclic simple shear test: (a) stress path; (b) stress-strain curve. A post-liquefaction cycle C is highlighted. Points S₁ (or S₅, S₉), S₂(or S₆), S₃(or S₇), and S₄(or S₈) correspond to selected states of $|\tau| \simeq \tau^{\text{amp}}$ (shear stress amplitude), $au \simeq$ 0, p reaching the lowest, and $p/p_0 \ge$ 0.01 (exiting the fluid-like state), respectively.

Figure 3: Evolutions of micro- and meso-scale descriptors in post-liquefaction cycle C: (a) coordination number $z_{\rm g} = 2N_c/(N_p - N_p^0)$; (b) contact normal fabric anisotropy $a_c = \operatorname{sign}(S_c)\sqrt{(3/2)a_c}$: a_c with $S_c = a_c$: $s/(\sqrt{a_c : a_c}\sqrt{s : s})$ and s deviatoric stress tensor; (c) particle k-cluster $(f_n \ge k \langle f_n \rangle)$ with k = 1; (d) percolation index ξ_z / L_z with k = 1 (largest k-cluster versus system dimensions).

Figure 4: Micro- and meso-scale descriptors versus mean stress during cyclic shearing: (a) coordination number z_g ; (b) fabric anisotropy a_c ; (c) percolation index ξ_z/L_z . p_{th} ranges between 0.05 and 3 kPa.

Conclusion

• Jamming transition: $z_g \simeq 3.6$, $\xi_z = 1$, evolving a_c

1 M. Yang, M. Taiebat, P. Mutabaruka, F. Radjaï, Physical Review E **103**, 032904 (2021)

Ø M. Yang, M. Taiebat, F. Radjaï, Computers and Geotechnics (2022), in review